Identification of 4-Hydroxycumyl Alcohol As the Major MnO2-Mediated Bisphenol A Transformation Product and Evaluation of Its Environmental Fate.
نویسندگان
چکیده
Bisphenol A (BPA), an environmental contaminant with weak estrogenic activity, resists microbial degradation under anoxic conditions but is susceptible to abiotic transformation by manganese dioxide (MnO2). BPA degradation followed pseudo-first-order kinetics with a rate constant of 0.96 (±0.03) min(-1) in the presence of 2 mM MnO2 (0.017% w/w) at pH 7.2. 4-hydroxycumyl alcohol (HCA) was the major transformation product, and, on a molar basis, up to 64% of the initial amount of BPA was recovered as HCA. MnO2 was also reactive toward HCA, albeit at 5-fold lower rates, and CO2 evolution (i.e., mineralization) occurred. In microcosms established with freshwater sediment, HCA was rapidly biodegraded under oxic, but not anoxic conditions. With a measured octanol-water partition coefficient (Log K(ow)) of 0.76 and an aqueous solubility of 2.65 g L(-1), HCA is more mobile in saturated media than BPA (Log K(ow) = 2.76; aqueous solubility = 0.31 g L(-1)), and therefore more likely to encounter oxic zones and undergo aerobic biodegradation. These findings corroborate that BPA is not inert under anoxic conditions and suggest that MnO2-mediated coupled abiotic-biotic processes may be relevant for controlling the fate and longevity of BPA in sediments and aquifers.
منابع مشابه
Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملHighly Electrocatalytic Oxidation of Bisphenol A at Glassy Carbon Electrode Modified with Metal-organic Framework MOF-508a and its Application in Real Sample Analysis
The use MOF-508a as sensing component for the precise discerning of bisphenol A via the electrochemical technique and its synthesis by a simple method were reported in the present study. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were applied to describe the MOF-508a’s composition and structure. In addition, MOF-508a was exploited so that the glassy carbon electrode could be...
متن کاملNovel pathway for bacterial metabolism of bisphenol A. Rearrangements and stilbene cleavage in bisphenol A metabolism.
Bisphenol A (BPA) is metabolized by a Gram-negative aerobic bacterium via a novel pathway involving oxidative skeletal rearrangement of the BPA. Oxidation of the aliphatic methyl group of BPA leads to coproduction of the methyl-hyroxylated 2,2-bis(4-hydroxyphenyl)-1-propanol and a skeletally rearranged triol 1,2-bis(4-hydroxyphenyl)-2-propanol. The major route of metabolism (> 80%) is through t...
متن کاملThe Prevention of Environmental Damage in Durable Unsymmetrical Huge-capacitors Based on MnO2 and Fe2O3 Nanotubes
The prevention of environmental damage in durable unsymmetrical huge-capacitor (UHC) with α-MnO2 nanotubes and amorphous Fe2O3 nanotubes grown on flexible carbon fabric is first designed and fabricated. The assembled novel flexible UHC device with an extended operating voltage window of 1.6 V exhibits excellent performance such as a high energy density of 0.55 mWh/cm3 and good rate capability. ...
متن کاملPhotodegradation of Insecticide Chlorpyrifos in Aqueous Solution under Simulated Solar Light Irradiation Conditions using Babolrood River Water
Chlorpyrifos is an organophosphate insecticide, used to control foliage and soil-borne insect pests on a variety of food and feed crops. In the natural environment, Chlorpyrifos can be degraded through several possible processes, including photodegradation, biodegradation, and hydrolysis. In the present work the photodegradation and environmental fate of Chlorpyrifos in aqueo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 49 10 شماره
صفحات -
تاریخ انتشار 2015